updates

- Added Homework assignment
\Longrightarrow from textbook
do on Paper, scan \& Submit on Canvas
due date Sun night
- Canvas online assignment due on Sunday
- Quiz on Chapter 1 due monday
- Finish Chapter 1.5 w/ Look applying sig figs in Call
- Look 1.6 and Dimensional Analysis (Conversions)
1.5 Sig fig Rules
different Rules for
(1) $+ー$
(2) $\times \div$
(3) $\operatorname{mogs} \Leftarrow$ Later

Multi \& Divisor

Example

$$
\text { mass }=432.79 \mathrm{~g}
$$

$$
\begin{aligned}
& \text { Density }=\frac{\text { mass }}{\text { vol }} \\
& \text { vol }=l \times w \times h \\
& \text { Density }=\frac{\text { mass }}{l \times w \times h}
\end{aligned}
$$

$$
\text { Density }=\frac{432.79 \mathrm{~g}}{\int_{3}^{5.72 \mathrm{~cm} \times 10.13 \mathrm{~cm} \times \frac{7.2 \mathrm{~cm}}{2} \text { smallest }}=}=
$$

$$
\begin{aligned}
& 432.79 \div 5.72 \div 10.13 \div 7.2=1.013738328689 \mathrm{~g} / \mathrm{cm}^{3} \\
& 432.79 \div(5.72 \times 10.13 \times 7.2)=
\end{aligned}
$$

$$
=1.0 \mathrm{~g} / \mathrm{cm}^{3}
$$

Rules for sigfig in $+k$ -

Example
$7.32 \mathrm{~cm} \quad 0.9 \mathrm{~cm} \quad 51.26 \mathrm{~cm} \quad 3.921 \mathrm{~cm}$

Chapter 1.6 Dimensional Analysis
System for solving problems that utilizes Conversion factors (equalities) to convert one unit of measure into another.

Book has table 1.6 with 12 conversion factors \Longrightarrow Igor these

* memorize Jasori's 3 keys

Length

$$
l_{\text {in }}=2.54 \mathrm{~cm} * \text { Exact }
$$

mass $\quad 116=453.6 \mathrm{~g}$ measured
Vol

$$
1 \mathrm{gal}=3.785 \mathrm{~L} \text { measured }
$$

System of Dimensional Analysis
Conversion factor
Given 0 nit $\times \frac{\text { value Desired Unit }}{\text { value Given unit }}=$ Desired Unit

Equality Value Desired Unit $=$ Valve Given unit

Question
How many inches are in 67.3 ft ?
Equality $12 \mathrm{in}=1 \mathrm{ft}$ definition
Road Map

$$
\begin{aligned}
\text { ft equality } \\
\text { def in lift } \\
\text { def }
\end{aligned}
$$

Steps to problem Solving
(1) Parce the ward problem

- Identify the given, the desired, and any equalities that may be in the problem
(2) Develop a Road map for Solving the problem
(3) Find (lookup) or Remember Required equalities $\Longrightarrow 3$ keys
(4) Write out Calculation
(5) perform calculation
(6) Apply Sig figs
(7) Box in the answer desired
Ex Calculate how many seconds are in 52. 2 years? No equalities provide.

Road Mop Given

$$
\begin{aligned}
& \text { years } \xrightarrow{\text { time }} \text { (1) days } \xrightarrow{(2)} \mathrm{hr} \xrightarrow{(3)} \min \xrightarrow{(4)} \text { seconds } \\
& \text { Equalities (1) } 365 \text { days }=1 \text { year } \\
& \text { (2) } 24 \mathrm{hr}=1 \text { day } \\
& \text { (3) } 60 \mathrm{~min}=1 \mathrm{hr} \\
& \text { (1) } 60 \mathrm{sec}=1 \mathrm{~min}
\end{aligned}
$$

$$
\begin{aligned}
& =1650000000 \mathrm{sec} \\
& \stackrel{\text { or }}{=} 1.65 \times 10^{9} \mathrm{sec}
\end{aligned}
$$

ex
How many Liters are there in a
Sample Containing Given 536 floz of Soft drink?
Road map Found equality on label $20 . f 102=591 \mathrm{~mL}$

$$
E E \text { or } E \text { or } 10^{x}
$$

r natural \log base $2 . x x$
If 10^{x}

$$
\left.536 \times 591 \times 1 \times 10^{\times}(\pm) 3\right) \quad \pm \text { or }(-)
$$

$$
\begin{aligned}
& \text { flow } \xrightarrow{\square} m L \longrightarrow \\
& \text { volume } \\
& \text { Eng } \\
& \underbrace{\text { Volume }}_{\text {Same system }} \\
& \begin{array}{l}
\text { Same system } \\
\text { same type }
\end{array} \\
& \left.\begin{array}{l}
1 \mathrm{~mL}=1 \times 10^{-3} \mathrm{~L} \\
1000 \mathrm{~mL}=1 \mathrm{~L}
\end{array}\right\} \text { equivalent } \\
& 536 \mathrm{fyoz} \times \frac{3^{3}}{\frac{591}{20}+1 / \mathrm{m} /} \times \frac{1 \times 10^{-3} \mathrm{~L}}{1 \mathrm{mp}}= \\
& 536 \times 591 \times \underset{\substack{\text { iE } \\
E \\
E \\
\hline}}{ } \div 20 \div 1=15.8388 \mathrm{~L} \\
& \underbrace{E(-)}_{\times 10}=16 \mathrm{~L}
\end{aligned}
$$

εx
Convert 3.75 miles into Kilometers (km).

$$
(1 \mathrm{mi}=5280 \mathrm{ft})
$$

Rood Map.

Equalities
(1) $1 \mathrm{mi}=5280 \mathrm{ft}$
(3) 1 in $=2.54 \mathrm{~cm} 3$ key $*$ def
(4) $1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$ or $100 \mathrm{~cm}=1 \mathrm{~m}$
(5) $1 \mathrm{~km}=1 \times 10^{3} \mathrm{~m}$ or $1 \mathrm{~km}=1000 \mathrm{~m}$
(2) $1 \mathrm{ft}=12 \mathrm{in}$

$$
\begin{aligned}
& 3 \text { def } \quad 3.75 \mathrm{~m} \% \times \frac{5280 \mathrm{ff}}{1} \times \frac{12 \mathrm{im}}{1 \mathrm{f} \neq} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{~m}}{100 \mathrm{ch}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{fl}^{2}}= \\
& 3.75 \times 5280 \times 12 \times 2.54 \div 100 \div 1000=6.03504 \mathrm{~km} \\
& =6.04 \mathrm{~km}
\end{aligned}
$$

